If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+15x=0
a = 8; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·8·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*8}=\frac{-30}{16} =-1+7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*8}=\frac{0}{16} =0 $
| 7/2x+1/2x=5+9/2 | | -16x-7=26x-7(6x-7) | | 2(v-1)=-9v-24 | | y=14+19 | | 473.10=38(x+2.45) | | 3x2+6x-72=0 | | 4y=6y-6 | | 9x-4/x=2 | | 3-9=7x-6x+6 | | 24m+20m-12=164 | | 31(x+2.45)=509.95 | | 8c–6=10 | | x^2-9x+48=0 | | 3.25+0.5x+113+56x=511/12 | | 2x=3x^2+1 | | 2x2+4x-48=0 | | 3.25+0.5x+113+56x=51112 | | 24=(2×)+4y | | 2.4-y=-1 | | 0.25(x-2)=15-x | | 0.9^x=9 | | -x+8=15+2x-3 | | 9x+8/4+5x-7/2=46 | | 6^x=72 | | -5n+2=16 | | 2n+-20=2n+-10 | | -d+2=14+3d-1 | | 10x+16=8x+20 | | 35+2a=5a | | 35+5a=2a | | 0.4y+0.7=-9.5-1.3y | | 2=5n+-16 |